今天给各位分享矩阵方程的知识,其中也会对矩阵方程组无解,有唯一解,有无穷多解进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
矩阵方程求解过程
1、初等变换法:有固定方法,设方程的系数矩阵为A,未知数矩阵为X,常数矩阵为B,即AX=B,要求X,则等式两端同时左乘A^(-1),有X=A^(-1)B。又因为(A,E)~(E,A^(-1)),所以可用初等行变换求A^(-1),从而所有未知数都求出来了。
2、逆矩阵求解法:求解方法:容易算出已知矩阵的行列式等于-1。然后计算伴随阵,具体方法是对于编号为mn的元素,划去原阵的第m行和第n列,原阵退化为n-1阶矩阵,求出这个n-1阶阵的行列式,然后填入伴随阵的第n行第m列位置,最后乘以-1的m+n次幂。下面是做法:
拓展资料:初等变换。
一般采用消元法来解线性方程组,而消元法实际上是反复对方程进行变换,而所做的变换也只是以下三种基本的变换所构成:
(1)用一非零的数乘以某一方程
(2)把一个方程的倍数加到另一个方程
(3)互换两个方程的位置
于是,将变换(1)、(2)、(3)称为线性方程组的初等变换。
求矩阵方程,
1、初等变换法:有固定方法,设方程的系数矩阵为A,未知数矩阵为X,常数矩阵为B,即AX=B,要求X,则等式两端同时左乘A^(-1),有X=A^(-1)B。又因为(A,E)~(E,A^(-1)),所以可用初等行变换求A^(-1),从而所有未知数都求出来了。
2、逆矩阵求解法:求解方法:容易算出已知矩阵的行列式等于-1。然后计算伴随阵,具体方法是对于编号为mn的元素,划去原阵的第m行和第n列,原阵退化为n-1阶矩阵,求出这个n-1阶阵的行列式,然后填入伴随阵的第n行第m列位置,最后乘以-1的m+n次幂。下面是做法:
拓展资料:初等变换。
一般采用消元法来解线性方程组,而消元法实际上是反复对方程进行变换,而所做的变换也只是以下三种基本的变换所构成:
(1)用一非零的数乘以某一方程
(2)把一个方程的倍数加到另一个方程
(3)互换两个方程的位置
于是,将变换(1)、(2)、(3)称为线性方程组的初等变换。
矩阵方程的定义
矩阵方程本质就是方程组。
例如矩阵方程AX=B,其中A就是系数矩阵,B就是等号右边的常数。
课本上是这样定义的:
记A=
,X=
,B=
,则
AX=B
(1)
称为矩阵方程。
关于矩阵方程和矩阵方程组无解,有唯一解,有无穷多解的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
还没有评论,来说两句吧...